Using Symbolic Technology to Derive Inverse Kinematic Solutions for Actuator Control Development

نویسنده

  • P. Goossens
چکیده

In multibody mechanics, the motion analysis for a platform (the kinematics problem) can be classified into two cases: the forward kinematics and the inverse kinematics problems. For the forward kinematics problem, the trajectory of a point on a mechanism (for example, the end effector of a robot arm or the center of a platform support by a parallel link manipulator) is computed as a function of the joint motions. In the inverse kinematics case, the problem is reversed: the goal is to compute the joint motions necessary to achieve a prescribed end effector trajectory. In general, given the mechanism geometry, it is quite straightforward to solve the forward kinematics problem both numerically and symbolically. In contrast, solving for the inverse kinematic problem typically involves solving a nonlinear system or equation with trigonometric functions. Issues such as singularity, multiple solutions (as in the case of “elbow up” and “elbow down” configurations for a robot arm), and no solution (as in the case in which the specified trajectory goes beyond the workspace of the mechanism) can often come up, further complicating the solution process. The complexity in the inverse kinematics problem is compounded even more for parallel link manipulators. Because of the complexity involved, the inverse kinematics problem is often solved numerically through iterations, and is computationally expensive. With a numeric approach, however, information about the motion of the mechanism is often lost. In this paper, we will describe how to obtain a symbolic solution to the inverse kinematics problem for two real problems using tools available in MapleSimTM. The first, a 2 degrees-of-freedom (DOF) tracking radar gimbal is used to show the principal steps in a relatively simple mechanism. These principles are then demonstrated with a much more complex mechanism: a Stewart-Gough hydraulic platform. Furthermore, we will show how having access to the symbolic Jacobian of the constraint equations allows us to inspect and exploit the underlying matrix structure, which leads to a simplified solution process for obtaining the symbolic solution. An advantage of having a symbolic solution to the inverse kinematics problem is the possibility of codegenerating the symbolic solution so that it can be embedded in real-time hardware-in-the-loop (HIL) applications. This approach can be contrasted with a purely numerical approach where the iterative solution process makes it difficult to use in real-time applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Inverse Kinematic Problem of a 2DOF Robot Using Decomposition Method

The inverse kinematics problem of a two degree of freedom (2DOF) planar robot arms issolved using Adomian’s decomposition method (ADM), after converting to a system of twononlinear algebraic equations. The advantage of the method is that it gives the solutions asfunctions of the desired position of the end effecter and the length of the arms. The accuracyof the solutions can be increased up to ...

متن کامل

Design and Kinematic Analysis of a 4-DOF Serial-Parallel Manipulator for a Driving Simulator

This paper presents the kinematic analysis and the development of a 4-degree-of-freedom serial-parallel mechanism for large commercial vehicle driving simulators. The degrees of freedom are selected according to the target maneuvers and the structure of human motion perception organs. Several kinematic properties of parallel part of the mechanism under study are investigated, including the inve...

متن کامل

Kinematic Synthesis of Parallel Manipulator via Neural Network Approach

In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...

متن کامل

Inverse Kinematics of a New Five Degree-of-freedom Spatial Parallel Micromanipulator

A study of the kinematic characteristics for the five degree-of-freedom (DOF) spatial parallel micromanipulator is presented. The objective of this work is to introduce for the first time a structural and geometrical model of a novel five degree-of-freedom spatial parallel micromanipulator, the analysis of the effective and useful workspace of the micromechanism, present the obtained analytical...

متن کامل

Using a Neural Network instead of IKM in 2R Planar Robot to follow rectangular path

Abstract— An educational platform is presented here for the beginner students in the Simulation and Artificial Intelligence sciences. It provides with a start point of building and simulation of the manipulators, especially of 2R planar Robot. It also displays a method to replace the inverse kinematic model (IKM) of the Robot with a simpler one, by using a Multi-Layer Perceptron Neural Network ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012